
AFRL-IF-WP-TR-2002-1512

ADA/PORTABLE OPERATING SYSTEM
INTERFACE (POSIX) MATURATION
DELIVERY ORDER 0004: AVIONICS
SOFTWARE TECHNOLOGY SUPPORT (ASTS)

Marc J. Pitarys

EMBEDDED INFORMATION SYSTEM ENGINEERING (AFRL/IFTA)
INFORMATION TECHNOLOGY DIVISION
INFORMATION DIRECTORATE
AIR FORCE RESEARCH LABORATORY, AIR FORCE MATERIEL COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7334

HUGHES AIRCRAFT COMPANY (RAYTHEON)
2000 E. IMPERIAL HIGHWAY
EL SEGUNDO, CALIFORNIA 90245

NOVEMBER 1995

FINAL REPORT FOR PERIOD 23 JANUARY 1995 - 30 NOVEMBER 1995

I Approved for public release; distribution unlimited

INFORMATION DIRECTORATE
AIR FORCE RESEARCH LABORATORY
AIR FORCE MATERIEL COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7334

20020604 412

NOTICE

Using government drawings, specifications, or other data included in this document for any
purpose other than government procurement does not in any way obligate the U.S. Government.
The fact that the government formulated or supplied the drawings, specifications, or other data
does not license the holder or any other person or corporation; or convey and rights or permission
to manufacture, use, or sell any patented invention that may relate to them.

This report has been reviewed by the Office of Public Affairs (ASC/PA) and is releasable to the
National Technical Information Service (NTIS). At NTIS, it will be available to the general
public, including foreign nations.

This technical report has been reviewed and is approved for publication.

?^TO^
MARC J. PITARYS, Project Engineer
Embedded Information System Engineering Branch
AFRL/IFTA

f/tfa**^ 30Ju*»mr-
JAMES S. WILLIAMSON, Chief
Embedded Information System Engineering Branch
AFRL/IFTA

EUGENE C. BLACKBURN, Chief
Information Technology Division
AFRL/IFT

Copies of this report should not be returned unless return is required by security considerations,
contractual obligations, or notice on a specific document.

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204,
Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing lo comply with a collection of information if it does not
display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YY)

November 1995

2. REPORT TYPE

Final

3. DATES COVERED (From - To)

01/23/1995-11/30/1995

4. TITLE AND SUBTITLE

ADA/PORTABLE OPERATING SYSTEM INTERFACE (POSIX) MATURATION

DELIVERY ORDER 0004: AVIONICS SOFTWARE TECHNOLOGY SUPPORT
(ASTS)

6. AUTHOR(S)

Marc J. Pitarys (AFRL/IFTA)

5a. CONTRACT NUMBER
F33615-92-D-1050

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER
7861 IF

5d. PROJECT NUMBER

3090
5e. TASK NUMBER

01
5f. WORK UNIT NUMBER

18
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESSEES) 8. PERFORMING ORGANIZATION

REPORT NUMBER

Embedded Information System Engineering (AFRL/IFTA)
Information Technology Division
Information Directorate
Air Force Research Laboratory, Air Force Materiel Command
Wright-Patterson Air Force Base, OH 45433-7334

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Hughes Aircraft Company (Raytheon)
2000 E. Imperial Highway
El Segundo, CA 90245

INFORMATION DIRECTORATE
AIR FORCE RESEARCH LABORATORY
AIR FORCE MATERIEL COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7334

10. SPONSORING/MONITORING
AGENCY ACRONYM(S)

AFRL/IFTA

11. SPONSORING/MONITORING
AGENCY REPORT NUMBER(S)

AFRL-IF-WP-TR-2002-1512

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT (Maximum 200 Words)

This effort matures and demonstrates Portable Operating System Interface (POSIX) features for strike fighter avionics software.
The maturation and demonstration focused on assessing the performance and security of selected POSIX interfaces. The Hughes
Aircraft corporation Avionics Operating System (AOS) was used as benchmark to compare the performance and security results
from the POSIX assessment.

15. SUBJECT TERMS

Ada, POSIX, System application programming interface (API)
16. SECURITY CLASSIFICATION OF:

a. REPORT
Unclassified

b. ABSTRACT
Unclassified

c. THIS PAGE
Unclassified

17. LIMITATION
OF ABSTRACT:

SAR

18. NUMBER OF
PAGES

34

19a. NAME OF RESPONSIBLE PERSON (Monitor)

Marc J. Pitarys
19b. TELEPHONE NUMBER (Include Area Code)

(937) 255-6548 x3608
Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18

Tahie of Contents

Abstract *
1.0 Introduction 2

Statement of the Problem 2
Problem Attack 2
Tasks Completed For This Study 3
Approach 3
Resources & Tools Used 4

2.0 Data 5
Service #1: Semaphores o

Service Timings 7
Executable Size 7
Complexity 8
Security 8
Implementation Difficulties 9

Service #2: Timer Services 10
Service Timings 10
Executable Size 12
Complexity 12
Security 13
Implementation Difficulties 13

Service #3: Event Notification 14
Service Timings 14
Executable Size 15
Complexity 16
Security 16
Implementation Difficulties 17

Service #4: Message Queues 18
Service Timings 18
Executable Size 19
Complexity 19
Security 20
Implementation Difficulties 20

3.0 Summary & Recommendation 21
Summary 21

Technical Findings 21
Other Areas of Concern 21

Recommendations 23
4.0 References 25

HI

Abstract
The goal of this effort is to mature and demonstrate Portable Operating System

Interface (POSEX) features for strike fighter avionics software. The maturation and
demonstration focused on assessing the performance and security of selected POSIX
interfaces The Hughes Aircraft Corporation Avionics Operating System (AOS) was
used as a benchmark to compare the performance and security results from the POSIX
assessment.

The Ada/POSIX Maturation (APM) effort implemented, demonstrated, and
evaluated the latest drafts of Ada bindings to the POSIX real-time standards. The AOS
was extended to support the new POSIX application programming interfaces (APIs). The
real-time features of POSIX and their performance characteristics were measured and
analyzed by executing a test suite that contained these features.

The analysis of POSTX for secure time critical avionics systems helped quantify
and reduce the risks of adopting POSIX for new strike weapon systems. The acceptance
of a standard operating system API is critical when re-using software artifacts since the
operating system and its API define the foundation for the application software
architecture. Specifying the API early in a program facilitates the re-use of software
developed during the concept demonstrations of the operational system. Also, significant
investments in existing avionics applications can be leveraged when the software
architecture and the specified API are backward-compatible.

1.0 Introduction
Statement of the Problem

Software development and post deployment support costs are a significant portion
of an avionics system's life cycle costs. Increases in software productivity through the re-
use of existing avionics domain software necessitate the acceptance of standard software
interfaces. The standardization of the operating system interface facilitates the re-use of
application code, tests, designs, architectures, specifications, and knowledge as the
operating system interface is reflected in each of these. Software development and
maintenance are also improved by the commonality across avionics subsystems,
platforms and military services.

Advanced military aircraft objectives demand security and real-time
characteristics from avionics operating systems. These characteristics are not assured in
POSDC as the standard is still quite new and implementations of critical components such
as real-time extensions have only just begun to appear. The standardization of Ada
bindings to POSIX has lagged the C language bindings. POSDC was originally intended
as a set of standard interfaces to UNIX-like operating systems and has never been used
for an avionics system. Therefore, the specification of POSIX for an avionics program
involves cost, schedule and performance risks. The reduction of these risks are made
possible through the evaluation and demonstration of the security and real-time
characteristics of the API and its implementation.

NOTE: Throughout this report, references to various Institute of Electrical and
Electronic Engineers (IEEE) POSIX standards are made with the shorthand "POSK.n'\
which means IEEE POSIX Standard 1003.«. See section 4.0, "References", for the
complete titles of the standards.

Problem Attack
The task of evaluating the suitability of POSIX to advanced avionics systems

requires an analysis of the relative performance, security features, and difficulty of
implementing the POSIX Ada bindings, i.e., complexity. This can only be accomplished
through the implementation, demonstration, and evaluation of a proven advanced
avionics operating system that incorporates the relevant POSIX functionality.

For the APM effort, Hughes leveraged the AOS. The AOS, developed by
Hughes, is used in over one million lines of avionics application code. The AOS API is
currently being used on F-18 and F-22.

Hughes identified the relevant profile of POSIX Ada bindings, implemented those
bindings in the AOS, and demonstrated a comparison of AOS API and POSIX API
performance. The results of this approach assisted in determining the feasibility of using
an Ada POSIX operating system in an embedded avionics system. In addition, a better
understanding of the benefits and risks associated with POSIX based on detailed facts and
data were accomplished.

Tasks Completed For This Study
Four tasks were undertaken for this study:

Task 1: Select Candidate POSIX Features.

The POSIX standards are intended to support a very broad selection of platforms
including supercomputers, mainframes, workstations, personal computers, and embedded
systems. The POSIX working groups have identified and produced standards for various
environments, some of which are not necessary or useful in avionics systems. P0SIX.5b
and the dedicated real-time profile (POSIX. 13, PSE52) were reviewed and evaluated to
identify the subset of the POSIX Ada bindings to be implemented in the AOS.

Task 2: POSIX Avionics Operating System Development

The AOS was modified to support the POSIX subset identified in Task 1. The
AOS maintained backward compatibility from the AOS API where feasible and where it
did not interfere with the demonstration in Task 3. A test suite was then created to
exercise and time the comparable features of the two APIs in functionally equivalent
ways and report the results.

Task 3: POSIX Avionics Operating System Demonstration.

Hughes demonstrated the functionality and performance of the POSIX subset.
The performance characteristics of the POSIX API were compared with an AOS API
baseline The demonstration depicted system service execution times, performance and
sizing information for each feature of the POSIX subset. In addition, a security impact,
and a description of any implementation difficulties encountered during Task 2 were
documented.

Task 4: POSIX Assessment and Report

The report evaluates the feasibility of using an Ada POSIX operating system. The
functional capabilities and performance of the POSIX subset were summarized. Any
performance shortfalls, inadequate or immature POSIX standards, security issues, and
implementation difficulties were cited.

Approach
The POSDC interfaces features to be demonstrated were selected based on the

following criteria:

• The POSIX services are from those described in the most recent draft of
POSDC.5b.

• The AOS must support the same or functionally equivalent services to
provide a basis for comparison. For example, this eliminates features such as
Shared Memory (which the AOS lacks) or Global Bulk Memory Services
(which POSIX lacks.)

• The services should be commonly used by applications. Demonstration of
esoteric features would prove little about the feasibility of using POSDC in
an avionics system.

• The functionality should be present in the POSIX.13 Dedicated Real-time
Profile. This is the "avionics" profile.

• For the most part, the services should be time-critical.

Based on these criteria and funding constraints, the following features of POSIX
were selected to be implemented:

• Semaphores

• Timers

. Event Notification (POSIX Real-Time Signals and AOS Event Clusters)

. Interprocess Communication (POSK Message Queues and AOS Labeled
Messages)

Resources & Tools Used
The AOS microkernel, called the Functional Core, was modified to execute on the

DMV (DeMonstration Vehicle), a Hughes i960-based breadboard. This platform was
used in the initial development of the AOS before the Common Integrated Processor
(CIP) hardware was available. This board runs at 16 MHz, and supports 2 Mbytes of
static RAM-

The Irvine Compiler Corporation (ICC) i960 MX Ada Compilation System
(version 7.7.5B) was used to compile and link the AOS POSIX implementation and test
suite. Both the AOS and the POSIX interfaces were implemented in Ada, supplemented
by insertions from package Machine_Code where necessary.

2.0 Data
For each POSIX service, data was collected for Timings, Executable Size,

Complexity, Security, and Implementation Difficulties.

Timings were collected in an effort to discover if there were any insurmountable
problems to achieving acceptable performance in the semantics of the POSIX services.
The timing results of the features identified in section 1.0 are detailed in the Service
Timings section for each service detailed in section 2.0. The majority of metrics collected
were based on the suggestions in POSIX.lb, Annex G—"Performance Metrics".

Executable Size was measured to determine if implementing the POSIX subset
would result in unacceptable memory consumption, since memory is usually a scarce
resource on embedded targets.

Complexity was measured by a Source Lines of Code (SLOC) count. This
measurement relates to cost, as more SLOC means more time to produce the code.

An analysis of the security impacts of the POSIX services was performed to
discover where security problems may exist and how they may be remedied. Also, the
impact on the POSIX services by the interfaces that implement security was examined.

Lastly, any implementation difficulties seen during the implementation of the
POSIX interfaces were summarized.

Service #1: Semaphores
Semaphores are a low-level synchronization primitive that are used by tasks or

processes to synchronize their execution or to insure mutual exclusion when accessing
shared data structures. A semaphore is an integer variable associated to a group of
suspended tasks. The state or value of a semaphore can be accessed and altered only at
creation/initialization and by the Lock and Unlock operations.Binary semaphores can
only assume the value 0 or 1. Counting semaphores can assume non-negative integer
values (although some implementations of semaphores let the count go negative to
indicate the number of suspended tasks).

The Lock operation on a semaphore S is as follows:

if S > 0 then
S := S - 1;

else
suspend on S;

■ end if;

The Unlock operation on a semaphore S is :

if (one or more tasks are waiting on S) then
let one of these tasks proceed;

else
S := S + 1;

end if;

Both Lock and Unlock are atomic operations. Both POSIX and AOS support
counting semaphores.

POSIX defines two types of counting semaphores: anonymous and named. The
operations (Lock and Unlock) on theses two types of semaphores are the same once the
semaphore exists; the difference is in how the semaphore is created and destroyed.
Named semaphores have a name (text string) associated with them and are opened, closed
and unlinked in a manner similar to a file. Named semaphores allow the sharing of a
semaphore between unrelated processes (that is programs). Anonymous semaphores have
no name (hence the term) and are created and destroyed by calls to Create and
Destroy rather thatOpen and Close. Anonymous semaphores may also be shared
between any processes that have access to the semaphore if the Process Shared attribute
of the semaphore is set.

The AOS only supports anonymous semaphores. Since the AOS was created for a
system where all the programs running are written in Ada, it was believed that
multitasking would be achieved though the use of Ada tasks, not multiple cooperating
programs. Since tasks within a single Ada program share the same address space, they
can utilize anonymous semaphores. Named semaphores were therefore considered
unnecessary. In addition, the AOS does not allow the sharing of anonymous semaphores
between processes.

Service Timings
As shown in Figure 2.1.1, the difference in service timings between the AOS and

POSIX API implementations is negligible. This is to be expected; the specification of the
operations on POSIX semaphores doesn't differ greatly from AOS semaphore operations.

Time (|xS)
500

Time (nS)
500

fiCB POSIX

Create Semaphore

Time (|iS)

100

ADS POSIX

Destroy Semaphore

AD6 POSIX

Get Signal Counts

Time (nS)

100

Time (nS)
100

oj^

Time friS)
100

POSIX ADS

Unlock, No Waiters

ADS POSIX

Unlock, Semaphore Locked

Time friS)
100

ADS POSIX

Conditional Lock,

Semaphore Locked

Time (|xS)
100

Timers)
100

^r & cssa^1-
ADS POSIX

Unlock, No Context Switch

ADS POSIX

Conditional Lock,
Semaphore Unlocked

Time (JLS)

100

zs~

ADS POSIX

Unlock, With Context Switch

Figure 2.1.1: Semaphore Timings

Executable Size

As shown in Figure 2.1.2, the executable size of the POSIX semaphores was 2.4
times as large as AOS semaphores due to the additional functionality of named

semaphores- Essentially, all of the size difference between the two implementations is
due to the named semaphores functionality. Overall, the size of POSIX anonymous
semaphores is the same as the AOS implementation.

Bytes

15000

Q.A
PCS POSIX

Memory Size

Figure 2.12: Semaphore Executable Size

Complexity

Since POSIX semaphores defines additional functionality, it follows that its
SLOC count would be greater than the AOS. The POSIX implementation was
approximately 1.9 times as large as the AOS, as shown in Fig. 2.1.3.

PCS POSIX

Complexity

Figure 2.1.3: Semaphore Statement Lines of Code (SLOC)

Security
POSIX allows the sharing of semaphores between processes. This allows the

semaphore count to be used as a covert channel. A covert channel is an unsanctioned
communication path that could be used to transfer data illicitly. To prevent this, access to
the semaphores needs to be mediated and restricted by the OS.

Restricting access to semaphores has several facets. The first concerns named
semaphores. Access must be checked on an Open of a named semaphore to insure that
the calling process has the necessary privilege to access the semaphore. The POSIX
implementation must also ensure that semaphore descriptors (the abstract handle that the
OS gives back to the application on an Open) cannot be propagated (via interprogram
communication or shared memory) to other processes that do not have the privilege to
access the semaphore. This requires that the semaphore descriptor only be valid within
the process that originally received the semaphore descriptor from the OS. This same

8

restriction must be applied to anonymous semaphores as well. Therefore, for security
concerns, the Process Shared attribute of POSIX anonymous semaphores must always be
set to false.

The restriction that a semaphore descriptor is only valid within the process that
originally received the semaphore descriptor from the OS does not apply to forked child
processes. A forked child process is an exact duplicate of the parent that spawned it;
therefore it is reasonable that the child should be able to access any data that the parent
has access to.

Implementation Difficulties
There were no unusual difficulties in implementing POSIX Semaphores.

Service #2: Timer Services
The AOS and POSIX have similar services to read/set the system clocks and to

create and arm both absolute and relative interval timers based on those clocks.

Service Timings
The service times for the creation of a timer, the reading of the system clock, and

the disarming of timers (both armed and quiescent) were quite similar on the two
implementations, differing by only a few microseconds. However, in the initial
implementation of POSIX timers, the amount of time needed to arm a timer was far
greater than AOS, taking as much as 5 to 10 times as long. This was determined to be
caused by how the POSIX time type (POSIX. Timespec) was specified.

The draft 4.0 version of POSIX.5b specified that Timespec should have both a
precision and a resolution of nanoseconds. On the DMV target, the system clock is a 64
bit microsecond timer. Hence, on an arm timer request each parameter of type
Timespec needed to be converted to the underlying timer hardware representation.
This conversion from nanoseconds to microseconds required 64 bit division on a target
machine that did not directly support this. This conversion caused the additional timing
overhead.

After reporting the problem with the POSIX Timespec at the January 1995
IEEE POSIX Working Group meeting, the technical editors of POSDC.5b decided that it
was not necessary to require the resolution of the underlying implementation of
Timespec to be any greater than the required resolution of the system clock. This
change will allow system implementors to choose the implementation most appropriate
for their hardware configuration. Figure 2.2.1 illustrates the change in performance
between the two implementations. Overall, this problem with the POSIX Timespec
implementation demonstrated the need to conduct a "hands-on" analysis of standard
operating system features before they are incorporated into an avionics operating system.

Time (|xS)
300

OLD NEW

Arm Absolute Timer

Time^S)
600 /T

o.<4 V~X » -- * -" * - y
OLD NEW

Arm Absolute Timer,
Periodic

Time ^S)

300

Time friS)
50

A-—v
OLD NEW

Absolute Timer
Expiration Latency

OLD NEW

Disarm Absolute Timer

10

There was also significant difference in the latency of notification of timer
expirations between the AOS and POSIX timers. This is the difference between the time
that a timer was set to expire and the time that the first instruction is executed in the task
waiting for the timer expiration. The POSIX latency was greater by slightly more than a
factor of two, primarily due to the greater overhead of signal delivery (the POSIX method
of asynchronous notification) as opposed to the equivalent AOS method of signaling an
event cluster. Figure 2.2.2 compares the AOS and improved POSIX timings. (Recall that
these POSIX timings were improved as a result of the POSIX Working Group's decision
not to require the resolution of the underlying implementation of Timespec to be any
greater than the required resolution of the system clock.)

Time (nS)
300

TimeOiSL.

Time (nS)
300

AOS POSIX

Create Timer

Time (nS)
300

A06 POSIX

Get System Time

Timer (jiS)
300

<£
fiCB POSIX

Arm Absolute Timer

PCS POSIX

Arm Absolute

Timer, Periodic

PCS POSIX

Arm Relative Timer

Time (nS)

300

Time (\iS)
300

Time (u,S)

300

y£
KB POSIX

Disarm Absolute Timer

PCS POSIX

Disarm Absolute Timer,

Periodic

ADS POSIX

Disarm Relative Timer

Figure 2.2.2: Timer Tunings

11

Timer (nS)
300

Time (fiS)
300

Time (nS)
300

Jc=ö-i^m&7- ^ fe^^-

PCS POSIX PCS POSIX

Arm Relative Timer,
Periodic

Time (\iS)

300

Disarm Relative Timer,
Periodic

Time (nS)

300

AB POSIX

Disarm Non-Armed Timer

ADB POSIX PCB POSIX

Absolute Timer

Expiration Latency

Absolute Timer Expiration
Latency, Periodic

Figure 2.22 (cont'd): Timer Timings

Executable Size
The AOS timers were 1.5 times as large as the POSIX timers, as shown in Figure

2.2.3. This is due to additional functionality provided by the AOS interface. The AOS
ailöws the caller to specify one or more notification mechanisms (semaphores, event
clusters, or status blocks); this requires additional code to implement. The AOS also
provides services to suspend and resume all armed timers.

Bytes
15000

o.<4
KB POSIX

Memory Size

Figure 223: Timer Executable Size

Complexity
As shown in Figure 2.2.4, the AOS timer implementation SLOC count is 1.3

times as large as the POSIX implementation owning to the additional functionality
mentioned in above in Executable Size.

12

SLOCs

600

ACS POSIX
Complexity

Figure 2.2.4: Timer Statement Lines of Code (SLOC)

Security
Since timer requests are contained within a single process, there are no security

issues regarding their use. The one time related service that may have security
implications is the setting of the system clock (or any clock that another process may
read). The POSIX standard does allow an implementation to restrict the setting of the
system clock to those with some implementation-defined "appropriate privilege."

Implementation Difficulties

The one major thorn in the side of implementors will be the arithmetic operations
on POSIX . Timespec. In POSLX.lb, the structure Timespec was defined as a C
structure with two members: tv_sec (a signed seconds count) and tc_nsec (an
unsigned nanoseconds count). This data structure appears in the Ada binding as the
private type POSIX. Timespec. (It was decided to make the type private to allow
greater freedom to implementors to utilize the best representation for the type.) Package
POSIX defines the arithmetic operations on Timespec, conversions operations to and
from standard. Duration, as well as services to get and set the seconds and
nanoseconds attributes of Timespec variables.

However, an oddity about how Timespec represents negative time values
makes some of these operations difficult to implement. If the seconds attribute is signed,
but the nanoseconds attribute is unsigned, then the representation for -0.6 seconds must
be (seconds = -1, nanoseconds = 0.4x109). This leads to the following problem: If the
data representation of Timespec follows the C interface, the conversions to and from
seconds, nanoseconds and Timespec become trivial to implement, but the arithmetic
operations become quite complicated and (perhaps more importantly) slow. If the
implementation of Timespec is a simple signed long integer count, the arithmetic
operations become less complicated, but the complexity of the conversion operations
increases substantially. In either case, the implementation has a performance penalty.

13

Service #3: Event Notification
POSIX currently has the delivery of signals as its only form of asynchronous

notification (that is notification of asynchronous events such as timer expiration,
asynchronous I/O completion, etc.). The POSIX real-time extensions adds the concept of
real-time signals, which provide for queuing (normal signals are not normally queued,)
and the attaching of data to a signal occurrence. Real-time signals are used as follows:
each type of service that needs to provide an asynchronous notification of completion
takes as a parameter a value of POSIX_Signals . Signal_Event. This data structure
contains at least the following pieces of information:

• which signal to send when the event of interest occurs

• the notification type [currently either Signal_Notif ication (sendthe
specified signal) or No_Not if ication (do nothing)]

• an optional piece of user data to be queued along with the signal.

The user can then call one of several services that allow the calling task to be suspended
until one of a set of specified signals occur, or (optionally) until a time-out occurs.

AOS semaphores and event clusters serve the same function that POSIX real-time
signals do. The services that require asynchronous notification allow the user to provide a
semaphore or event cluster (or both) and an optional status block. When the event of
interest occurs, the provided notification mechanisms will be updated. The calling task
may poll on the status block, or suspend itself on the semaphore or event cluster waiting
for the event of interest to occur.

Service Timings
The POSIX services to send or await a signal occurrence were compared to the

AOS event clusters, since event clusters are more functionally equivalent to POSIX real-
time signals than semaphores are. As noted in the timer expiration latency times, the time
to send or receive a POSIX signal is significantly greater than the equivalent AOS time to
signal an event cluster, or receive notification that an event cluster has been signaled (by
approximately a factor of 2.) Low latency in responding to events is an important aspect
of real-time systems, making this long latency a significant problem.

The somewhat complex semantics of signal delivery in POSIX is the main cause
of the longer latency. The processing to send a signal involves checking which signal is
being sent (some signals such as Signal_Null and Signal_Kill have special
semantics), whether the signal is currently ignored or blocked from delivery, etc.
Overall, signals are a high-overhead means of asynchronous notification of events.
Allowing for the use of lower over-head synchronization mechanisms (such as
semaphores or condition variables) in asynchronous notification would seem to be a
reasonable addition to the real-time POSIX standards.

It should be noted that the original specification of real-time signals was targeted
at single-threaded C programs. In such an environment, a relatively efficient
implementation of real-time signals can be realized. This is due to the fact that there can
never be more than one thread of control waiting for the signal to occur. When the
notification signal is sent, there is no question of which thread is waiting for the signal
since there is only one thread.

14

However, in a multi-threaded environment (whether in C or Ada) the
implementation becomes far more complex. It is possible to have multiple tasks
suspended, waiting for a possibly overlapping set of signals. This added difficulty is the
other component of the longer latency times recorded for POSIX signals.

There are two basic multi-threaded implementations for real-time signals. The
first implementation has all the tasks in one long queue. When a signal is delivered, the
OS must search the queue for the first task which is waiting for that signal. The time to
deliver a signal is a function of how many tasks are currently suspended waiting for
signal notifications, and the order in which they were suspended. This cannot generally
be predicted by the application, making timing analysis difficult. This approach is quite
simple to implement, but has the disadvantage that it is non-deterministic, and thus
unsuitable for real-time systems.

The second implementation has a queue of tasks for each signal that can be
waited for, and when a task suspends waiting for a set of signals, it must be placed on
multiple queues, one for each signal in the set. (For example, if the task were waiting for
signals X, Y, and Z, the task would be placed on the queues associated with signals X, Y,
and Z.) When a signal is delivered, the OS simply dequeues the task at the head of the
queue associated with the delivered signal; there is no search involved. If the task is
waiting for n signals, the OS must also remove the task from the «-1 other queues that it
is on. However, if some care is exercised in setting up the data structures, this can be
performed in a manner such that the amount of time required to do this is a linear
function of the number of queues that must altered. This makes the time to deliver a
signal a function of how many signals the task is simultaneously waiting for (the time
should increase a fixed amount for each additional signal in the set) If the task is
waiting for only one signal, the time to deliver the signal should be essentially constant.
This will allow an application to account for the event notification overhead in their
timelines.

Figure 2.3.1 illustrates the timing data for POSIX Signals.

Time (uS)
300

Time (uS)

300

ty-
pes POSIX

Send Signal Or Event

Figure 2.3.1: Signal Timings

PCS POSIX

Receive Signal Or Event

Executable Size

As shown in figure 2.3.2, the size of the POSIX implementation was 1.6 times as
great as the AOS event cluster mechanism. This is due to the more complex semantics
associated with POSIX signals. Note that this size comparison compares only static code
and data structures; it does not account for the dynamic memory required for the
notifications and their linking onto either POSIX or AOS data structures.

15

Bytes

20000 , /

/ 0- r
PCS POSIX

Memory Size

Figure 232: Signal Executable Size

Complexity

As shown in Figure 2.3.3, the SLOC count for the POSIX signals was 2.2 times as
great as the AOS event clusters, and again this is due to the more complex semantics
associated with POSIX signals.

SLOCs
1000 -/

ACS POSIX

Complexity

Figure 233: Signal Statement Lines of Code (SLOC)

Security

POSIX signals as they are used for asynchronous event notification do not present
a security problem since the process receiving the signal is the same one that requested
the notification. A data flow from a process to itself is always permissible (and in fact,
impossible to prevent). However, POSLX signals can be used for interprocess
communication (AOS event clusters can only be used for intraprocess communication)
and thus are a data channel that must be mediated by the OS. POSIX. le addressed these
issues, and proposes several changes and additions to the semantics of sending a signal.

The first addition assumes that each process has an associated Mandatory Access
Control (MAC) label. When sending a signal between processes, the label of the sending
and receiving process must be compared according to the following rules:

(1) If the MAC label of the sending process is equivalent to the MAC label of
the receiving process, then no additional requirements are posed.

16

(2) If the MAC label of the sending process dominates the MAC label of the
receiving process (i.e., the signal is being "written down"), then the sending
process must have appropriate privilege.

(3) If the MAC label of the sending process is dominated by the MAC label
of the receiving process, (i.e., the signal is being "written up"), then it is
implementation-defined whether the sending process requires appropriate
privilege.

(4) If the MAC label of the sender and the receiver are incomparable, then
the sending process must have appropriate privilege.

This checking would take place during what might be considered a time-critical
service and would therefore have an impact on performance. The AOS design has
attempted to confine such checking to non-time-critical "connect" or setup services. This
one-time check determines if the caller has the appropriate privilege for the requested
capability. (If the caller does, a capability token is passed back to the caller.) This token is
then passed back to the OS during time-critical services as proof that the caller has the
appropriate privilege to perform certain tasks. This method however, will not work in the
case of signals since it is not known until a signal is sent who the receiving processes)
will be.

A second change involves the use of Signal_Null. IfSignal_Null is sent
to a process, no actual signal is sent, but all the necessary error checking takes place. This
can be used to determine if a process with a certain process ID exists. POSDC. le
specifies that if the MAC label of the sending process does not dominate the MAC label
of any receiving process and the sender does not have appropriate privilege, then the
system returns an error indicating that the receiving process does not exist.

The last change involves granting the capability for processes to block certain
"unblockable" signals (such as Signal_Kill).

Implementation Difficulties

The complex semantics associated with POSIX signals make their implementation
challenging; however, there were no unexpected difficulties. Yet, there is one element of
the POSDC real-time signal delivery model that bears discussion.

In order to queue a signal for delivery, a POSDC process must utilize some system
resources (mainly, memory for the data). POSDC places a resource limit on how many
queued signals a process may send and simultaneously have pending at receiving
processes. A difficulty arises from the fact that this limit is not how many signals the
process may itself have pending (i.e., signals it is receiving) but how many it can send.
This complicates reclaiming these resources when the sending process terminates and still
has signals pending at other processes. Since the resources being used to queue the sent
signals are still in use by the receiving processes), they cannot be reclaimed during the
sending process' termination. (There is no rationale in the POSDC standards for making
this limit the number of queued signals that can be simultaneously sent versus received.
One explanation is that if the limit were a receive limit, one process could monopolize
another process' signal queuing resources by repeatedly sending a signal to that process,
effectively preventing reception of queued signals from other sources.)

17

Service #4: Message Queues
POSIX Message Queues provide services for interprogram communication. A

message queue is a collection of messages, each message being an array of byte values
with an associated priority. Within the message queue, the messages are kept in priority
order with first-in, first-out order among messages with the same priority. It is left to the
application to impose a data structure upon a message.

POSIX Message Queues are accessed by applications in a way similar to files.
A queue is opened (and optionally created if it does not exist) using a POSIX pathname.
Send and Receive operations enqueue and dequeue messages from a queue. Once
created, a queue's name has global scope, and the queue is accessible by all processes
having the proper access permissions. Any number of processes may have a queue open,
within system configuration limits, for reading, writing, or both.

The AOS Labeled Message services also provide for interprogram
communications, but use a very different approach and mechanism. This makes a direct
comparison very difficult. In the AOS, Labeled Messages are known and statically
declared at compile time, and contain the destination embedded in the message. Buffer
management is left to the application. Different queues deal with different priorities of
messages which are statically known, and thus can be statically created. With POSIX
Message Queues, messages can be dynamically created and contain only data. Processes
that wish to communication must Open the same queue via the same pathname, which
again, may be dynamically determined, so queues must be dynamically created.

Finally, the Labeled Message services also support distributed inter-processor
communications while Message Queues do not. Thus, the Executable Size and
Complexity comparisons have been adjusted to discount interprocessor communications.

Service Timings
The AOS Labeled Message services and mechanism were designed to perform as

much verification and validity checking as possible when the application is built instead
of at run-time. The run-time services themselves need perform little or no checking. The
POSIX Message Queue services on the other hand have no such build-time checking, and
all validity checks must be performed at run-time. This results in the nearly double the
overhead in a POSIX Send and Receive operations versus the AOS Transfer (the
actual AOS subprogram is called Send, but it performs both the send and receive
operations in one step.)

The AOS Labeled Message mechanism also allows the queues to be statically
created, since the number of queues is based only on the different message priorities
available. Thus, no "queue creation" is necessary and the time to open a channel for a
message is always repeatable. The POSIX Message Queue services determines the
destination of a message (the queue) when the queue is opened or created, and thus may
need create new queues at run-time. This is apparent in the rather large
Open_Or_Create time for a new queue, but a very short Open_Or_Create time for
an existing queue.

18

Time (uS)
4000

Time (uS)

500 -r\, j.

KS POSIX

Create New Queue

KS Foax

Open Existing Queue

Time (^S)

500

jHg^>07-

Time (|iS)

500

KB POSIX /OS POSIX POSIX

Close Queue
Transfer Send Receive

Transfer/Send/Receive Message

Figure 2.4.1: Message Queue Timings

Executable Size

The size of the AOS Labeled Message implementation is 1.9 times the size of the
POSIX Message Queue implementation. This is due to the additional functionality in
AOS Labeled Messages. Labeled Messages provide several notification methods and
transfer modes not present in POSIX Message Queues. The memory for the modules that
provide interprocessor communications has been discounted from the AOS total, but
some of this functionality is still present in the remainder of the code.

Bytes
50000 -/"Ic

PCS POSIX

Memory Size

Figure 2.42: Message Queue Executable Size

Complexity

The SLOC count for AOS Labeled Messages is about 1.5 times the SLOC count
for POSIX Message Queues. Again, this is due to the additional functionality of AOS
Labeled Messages.

19

SLOCs

3000 ■

ADS POSIX

Complexity

Figure 2.4.3: Message Queue Statement Lines of Code (SLOC)

Security
Message passing interfaces have obvious security implications, since their only

function is to pass data. Since POSIX Message queues must be opened or created before
they can be accessed, its is a relatively simple process to add the necessary access
privilege checks during the opening/creation of the message queue. However, message
queue descriptors must follow the same restrictions that semaphore descriptors do;
namely that a message queue descriptor is only valid within the process that originally
received it from the OS. Failing to constrain the passing of message queue descriptors
would allow for the possibility of opening an illicit high bandwidth data channel.

Implementation Difficulties

A problem with POSIX Message Queues is that the current Ada binding restricts
the possible implementations of message queue descriptors despite the descriptor being a
private type. The Set_Attributes operation specifies that the descriptor is an "in"
parameter only, which forces attributes to be stored somewhere other than in the
descriptor.

20

3.0 Summary & Recommendation

Summary

Technics/ Findings
The general findings of this study are that some of the POSDC services have

acceptable service times such that they can be used in a real-time avionics system.
However, there are some issues with the long latencies introduced by the use of signals
for asynchronous notifications.

In general, the POSDC services tend to occupy more memory than their AOS
counterparts. This is due to additional functionality, much of which may not be useful in
a real-time avionics system.

The POSIX services lack the security features needed in a multi-level secure
environment. Adding the needed security features is a non-trivial undertaking. Specifying
the security aspects of a specific system is implicitly difficult. Specifying a generic set of
security features is even more difficult as previous attempts at adding security features to
POSDC have shown. (So little progress was made by the POSIX security Working Group
that in October of 1995, a motion was made to consider removing their Project
Authorization Request).

A major piece missing from POSIX is a set of real-time distributed IPC (Inter-
Process Communication) interfaces. There is a POSIX working group dedicated to
producing a standard in this area, but they have only recently produced their first cut at a
set of language bindings; it may be several years before a usable standard is approved.

The findings of this study have attempted to point out generic aspects of the
POSDC Ada bindings that will hold true in most, if not all, implementations. However,
when interpreting these findings, it must be remembered that this is only one
implementation of the POSIX Ada bindings. Many aspects of the target system and of the
tools used to implement the binding can affect the timing and sizing of an
implementation. The suitability of using a POSIX implementation in a specific system
must still be determined; simply using an implementation that is compliant to the
standard is not a guarantee of suitability in of itself.

Other Areas of Concern
This report has thus far focused only on the technical aspects of the use of the

POSIX Ada bindings. However, there are other potential pitfalls of using POSIX and
Ada.

• Vendor Support for POSIX

Very few of the shrinking number of Ada vendors are supporting bindings to
POSDC. All commercial OS vendors are targeted to the C language market, and so they
tend to support only a C binding if they support POSDC at all. Those who need an Ada
binding to the POSDC may therefore be forced to write their own or pay someone to
create one for them.

• Flagging Support for POSDC

21

Attendance at the POSIX working group meetings has been steadily shrinking for
the last 2 years. Without support from interested parties (in the form of people to work on
the standards), there will be no forward movement of the POSIX standards.

• Ada Q5 And POSIX

It is an open question whether an Ada 95 compiler that fully supports the Systems
and Real-Time Annexes obviates the need for a POSIX Ada API, since many of the
functions of the POSIX API are met through the specification of the Ada 95 language
itself. For example, semaphore services might be replaced by Ada 95's protected objects
or packages Ada.Asynchronous_Task_Control and Ada.Synchronous_Task_Control.

22

Recommendations

1) Implement more services.
During this study we have implemented a small subset of POSIX services:

Semaphores, Timers, Signals, and Message Queues. We have identified issues and
gathered data only made possible by implementing a POSIX interface in a real system.
Therefore, we recommend that work be continued to implement more of the POSIX
features specified in the real-time profiles. Some of these POSIX features are:

. lyfiitexes/Cnndition Variables: Synchronization mechanisms that include
priority inheritance and priority ceiling mutexes. This would be helpful to
implement if we pursue a Project Authorization Request (PAR) to include
Condition Variables as an additional asynchronous notification mechanism,
since this will allow us to have a working prototype.

. Process Creation/Termination: Services to create new processes (i.e., Ada
programs or active partitions) and return status on their termination.

. ghared Memory/Memory Protection: An issue in a secured system. We
need to implement allocation/management of shared memory, implement
the setting of page protections, and identify issues.

. Task Scheduling: An implementation of the Ada 95 scheduling model. This
task would require support from a compiler vendor since Ada pragmas are
involved.

• Synchronous & Asynchronous I/O: I/O in step with and in parallel with
program execution. Synchronous I/O calls are: open, close, read, write;
basic I/O services. The asynchronous calls allow reads/writes to proceed in
parallel with program execution. (Synchronous I/O is required first, since
you must open a file/device before submitting read/write requests.)
Implementing I/O requires a decision on the interconnect bus type (1553, PI-
Bus, SCI, etc.).

. Synchronized I/O & Prioritized I/O: Features that may or may not be
needed in an avionics environment. All AOS I/O is already synchronized
(hence, the AOS does not do file buffering.). As for prioritized I/O, the
AOS defines the I/O priority to be the priority of the process (i.e. the Ada
program or active partition) and not the priority of the task/thread. All tasks
in a program submit their requests at the same priority unless they actively
request to submit at a lower priority.

• fjle Descriptor Management: Includes file locks, position seeking, and file
descriptor duplication.

• Other: All of the more-or-less trivial packages to implement. If we reach
this point, we will feel confident in the feasibility of using POSIX in a Real
Time Secured Avionics Environment. This category includes system
configuration packages, calendar services, environment services, pipes,
memory locking (meaningless on systems without memory page swapping,)
and other utility packages.

23

2) Define POSIX security.
During this implementation of the POSIX features on the AOS, security

shortcomings have been identified. There is a need to develop and recommend
modifications to those POSIX functions to support security. Our implementation
demonstrates that a Security Profile is needed and a task should develop this Security
Profile.

3) Participate in the POSIX Working Groups.
We have found issues with POSIX that we have brought up to the POSIX

Working Group. In particular, we have identified the need for the standard to allow
different types of event notification besides POSIX signals. At the January, 1996 meeting
of the POSIX Working Group, we intend to request that Semaphores or other simpler
mechanisms be allowed for event notification

4) Study the Impact of Ada 95 on POSIX.
What features in Ada 95 can replace OS services? What support must an OS have

for Ada 95? Are they necessary and what form should the POSIX bindings for Ada 95
take?

24

4.0 References
Standard for Information Technology —Portable Operating System Interface

(POSIX) Part 1: System Application Program Interface (API), Amendment 1:
Real-time Extension [C Language] . IEEE Std. 1003.1b-1993, herein referred to
asPOSlX.lb.

Standards Project Draft Standard for Information Technology—Portable Operating
System Interface (POSIX) Parti: System Application Program Interface (API),
Amendment #: Protection, Audit and Control Interfaces [C Language]. IEEE
P1003. le Draft 14 March 1994, herein referred to as POSIX.le.

Standards Project Draft Standard for Information Technology—POSLX Ada
Language Interfaces—Part 2: Bindings for real-time Extensions. IEEE P1003.5b,
Draft 5.0 May 1995, herein referred to as POSIX.5b.

Standards Project Draft Standard for Information Technology—Standardized
Application Environment Profile—POSLX Real-time Application Support (AEP).
IEEE PI003.13 Draft 7.0 August 1995, herein referred to as POSIX. 13.

POSLX Delta Document For the Next-Generation Computer Resources (NGCR)
Overating Systems Interface Standard Baseline (Version 4), Operating Systems
Standards Working Group (OSSWG), Report N° NAWCADWAR-94109-70,
1 June 1994

25

HJ(f 96-0*26

